Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells
نویسندگان
چکیده
OBJECTIVES Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. MATERIALS AND METHODS Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitive impairment in the two groups was assessed using the Morris water maze test, cell proliferation in the hippocampus was compared using 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry, and hippocampal levels of nestin and neuronal class III β-tubulin (Tuj-1) were measured using Western blotting. These results were validated in vitro by treating cultured neural stem cells (NSCs) with scutellarin (30 μM). RESULTS Treating mice with scutellarin shortened escape times and increased the number of platform crossings, it increased the number of BrdU-positive proliferating cells in the hippocampus, and it up-regulated expression of nestin and Tuj-1. Treating NSC cultures with scutellarin increased the number of proliferating cells and the proportion of cells differentiating into neurons instead of astrocytes. The increase in NSC proliferation was associated with phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, while neuronal differentiation was associated with altered expression of differentiation-related genes. CONCLUSION Scutellarin may alleviate cognitive impairment in a mouse model of hypoxia by promo-ting proliferation and neuronal differentiation of NSCs.
منابع مشابه
Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells
Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitiv...
متن کاملHigh neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملDifferentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold
The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...
متن کاملEffects of BIO on proliferation and chondrogenic differentiation of mouse marrow-derived mesenchymal stem cells
In vitro expansion of mesenchymal stem cell (MSCs) into large number is necessary for their application in cell-based treatment of articular cartilage defects. On the other hand, some studies have indicated that BIO (6-Bromoindirubin-3-Oxime) possesses mitogenic effects on cell culture. The objective of the present study was to examine the effect of BIO on in vitro expansion and chondrogenic di...
متن کاملIsolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells
Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 20 شماره
صفحات -
تاریخ انتشار 2017